
Sun™
Tech
DaysFaster Java™ Applications:

How To Tune The
HotSpot™ Virtual Machine
Simon Ritter
Technology Evangelist

simon.ritter@sun.com

Sun™ Tech Days

Sun™
Tech
Days

Agenda

 Profile of JVM workload

 HotSpot™ VM internal architecture

 Garbage collection

 General HotSpot™ performance tuning

 Tuning HotSpot™ for application
servers

 Further Information

Sun™
Tech
DaysJVM Workload

Server-side applications Client-side applications

Thread
Synchronization

Waiting
for Native

Windowing
Code

Bytecode
Execution

Other

Memory
Mgmt.

Bytecode Execution

Memory
Mgmt.

Other

Sun™
Tech
DaysHotSpot™ Major Features

 Fast thread synchronization
 Adaptive compilation
 Generational garbage collector

Sun™
Tech
DaysMemory Model

 Handleless objects

 Two-word object headers

 Reflective data as objects

 Native thread support

Sun™
Tech
DaysAdaptive Compilation

Program
Source

JavaC Byte
codes

Dynamic
Compiler

Native
Machine

Code

Virtual
Machine

Profiler

Control

HotSpot™

Class File
Identical For All

VMs

Compiled Machine
Code Changes
During Lifetime
of Application

Aggressive Inlining
Loop unrolling

Sun™
Tech
DaysObjects Need Storage Space

 Age old problems
 How to allocate space efficiently

 How to reclaim unused space (garbage)
efficiently and reliably

 C (malloc and free)

 C++ (new and delete)

 Java™ (new and Garbage Collection)

Sun™
Tech
DaysGC Responsibilities

 Garbage detection
 Distinguish live objects from garbage

 Reference counting

 Cyclic reference problem

 Garbage reclamation
 Make space available to the running

program again

Sun™
Tech
DaysObject Lifetimes

 Most objects are very short lived
 80-98% of all newly allocated objects

die within a few million instructions

 80-98% of all newly allocated objects
die before another megabyte has been
allocated

 This impacts heavily on choices
for GC algorithms

Sun™
Tech
DaysCollector Algorithms

 Copying

 Mark - Sweep

 Mark - Compact

 Incremental

 Generational

 Parallel Copy

 Concurrent

 Parallel Scavenge

Sun™
Tech
DaysCopying GC

From space To space

Before

After

Root
Set

To spaceFrom space

Sun™
Tech
DaysCopying GC

 Stop-the-world collector

 Very Efficient
 Traverses object list and copies objects in

a single cycle

 Simultaneous detection and reclamation

 GC pause is directly proportional
to total size of live objects
 Bigger semi-spaces improve efficiency

 Less frequent GC, more dead objects

Sun™
Tech
DaysMark – Sweep GC

 Stop-the-world collector

 Distinguish live objects from garbage
 Traverse graph of pointer relationships

 Mark objects that can be reached

 Reclaim the space
 Heap space is “swept” for marked areas

 Free space is added to a free list, ready
for use

Sun™
Tech
DaysMark – Sweep Problems

 Different-sized objects cause
fragmentation
 Multiple free lists for different-sized blocks

 Cost of collection proportional to size
of heap
 Not just live objects

 Locality of reference
 New objects get interleaved with old objects

 Bad for VM-based operating systems

Sun™
Tech
DaysMark – Compact GC

Before

After

x

x
x

Sun™
Tech
DaysMark – Compact GC

 Eliminates fragmentation issue of
Mark-Sweep

 Allocation becomes stack-based

 Order of objects maintained
 Locality of reference

 Requires multiple passes to complete
 Mark live objects

 Compute new location

 Update pointers

Sun™
Tech
DaysIncremental GC

 Stop-the-world impacts performance
 Big heap, big pauses (00's – 000's ms)

 Interleave units of GC work with
application work

 Problem is that references change
while GC runs
 Get floating garbage

Sun™
Tech
DaysGenerational GC

 Old objects tend to live for a long time
 GC can spend lots of time analysing and

copying the same objects

 Generational GC divides heap into
multiple areas (generations)
 Objects segregated by age
 New objects die more quickly, GC more

frequent
 Older generations collected less frequently
 Different generations use different algorithms

Sun™
Tech
DaysHotSpot™ VM Heap Layout

Tenured Space

Permanent Space

Permanent Generation

Old Generation

Young Generation

Eden Space From
Space

To
Space

Survivor Ratio
(2Mb default) (64Kb default)

(5Mb min, 44Mb max default)

(4Mb default)

Sun™
Tech
DaysYoung Generation Heap Size

Eden = NewSize –

 ((NewSize / (SurvivorRatio + 2)) * 2)

From Space = (NewSize – Eden / 2)

To Space = (NewSize – Eden) / 2)

 -XX:NewSize

 -XX:MaxNewSize

 -XX:NewRatio

 -XX:SurvivorRatio

Sun™
Tech
DaysOld Generation Heap Size

 Tenured generation
 Objects with long lifetime

 -Xms

 -Xmx

 -XX:MinHeapFreeRatio

 -XX:MaxHeapFreeRatio

Sun™
Tech
DaysPermanent Heap Size

 Used to hold class files

 Default size is 4Mb

 -XX:PermSize

 -XX:MaxPermSize

 -Xnoclassgc

Sun™
Tech
DaysParallel Copy GC

 Similar to copy-collector
 Still stop-the-world

 Allocates as many threads as CPUs
 Algorithm optimized to minimize contention

 Maximize work throughput
 Work stealing

Sun™
Tech
DaysParallel Copy GC

Single Threaded
Stop-the-world

collector

Parallel, multi-threaded
Stop-the-world

young generation collector

Application
Threads

GC
Thread(s)

Sun™
Tech
DaysParallel Copy Collector

 -XX:+UseParNewGC
 Default copy collector will be used

on single CPU machines

 -XX:ParallelGCThreads=<num>
 Default is number of CPUs

 Can be used to force the parallel copy collector
to be used on single a CPU machine

Sun™
Tech
DaysConcurrent GC

ApplicationThreads

Stop-the-world initial mark phase

Concurrent mark phase

Stop-the-world re-mark phase

Concurrent sweep phase

-XX:+UseConcMarkSweepGC

Sun™
Tech
DaysParallel Scavenge GC

 Stop-the-world

 Similar to parallel-copy collector

 Aimed at large young spaces (12-80Gb)

 Scales well with more CPUs

 Adaptive tuning policy
 Survivor ratio

 Promotion undo to prevent out
of memory

Sun™
Tech
DaysParallel Scavenge Collector

 -XX:+UseParallelGC

 -XX:ParallelGCThreads=<num>
 Control number of threads

 -XX:+UseAdaptiveSizePolicy
 Automatically sizes the young generation and

selects optimum survivor ratio

Sun™
Tech
DaysFactors Affecting GC

 Rate of object creation

 Object life spans
 Temporary, intermediate, long

 Types of object
 Size, complexity

 Relationships between objects
 Difficulty of determining and tracking object

references

Sun™
Tech
DaysBasic Approach To Tuning

 Profile, profile, profile!

 Use profile data to determine
factors affecting performance

 Modify parameters to optimize
performance

 Repeat

Sun™
Tech
DaysProfiling GC

 Simplest approach

 -verbose:gc

 -Xrunhprof

 -XX:+PrintGCDetails

 -XX:+PrintGCTimeStamps

 -XX:+PrintHeapAtGC
 Warning: very verbose

Sun™
Tech
DaysQuick Performance Fix

 Always upgrade to the latest version
of the JDK/JRE
 Sun is always working to improve

performance

 Sun is always working to reduce the
number of 'undocumented features'

Sun™
Tech
DaysPerformance Example

Changed implementation of AggressiveHeap option

Sun™
Tech
DaysObject Lifetimes

 Temporary
 Die before encountering a young GC

 Intermediate
 Die before being tenured to old space

 Long
 Get promoted to old heap space

 Ratio of these has big impact
on heap layout

Sun™
Tech
DaysReducing Object Lifetimes

 Code inspection
 Remove references when not required

 Can do this explicitly with

 objectRef = null;

 Avoid creating objects
 Intermediate objects silently created when

immutable object values change

Sun™
Tech
DaysObject Pooling

 Can be good for heavy weight objects
 Database connections/threads

 Reduce frequency of young GC

 Can also be bad
 Pooling can be more expensive than

creation/collection

 Can violate good OO design principles

Sun™
Tech
DaysDisabling Tenuring

 Promote all live objects
 No tenuring of objects in survivor spaces

 Good for apps with few intermediate objects

 -XX:MaxTenuringThreshold=0
 Number of times an object is copied in the

survivor spaces

 -XX:SurvivorRatio=100
 Ensures all of young generation is allocated to

the eden space

Sun™
Tech
DaysHelping The GC

 Reduce state
 Objects die before leaving eden

 Avoid references that span heaps
 More work required to trace links between

young and old spaces

 Flatten objects
 Complex structures require additional work

to determine live objects

Sun™
Tech
DaysHeap Sizing

 Extremely important to GC performance

 Factors to consider
 Young GC frequency/collection time

 Ratio and number of short, intermediate
and long life objects

 Promotion size

 Old GC frequency/collection times

 Old heap fragmentation/locality problems

Sun™
Tech
DaysSizing The Young Heap

 Fragmentation is not an issue
 Locality of reference could be

 Maximize collection of temporary objects
 Reduces promotion & tenuring

 Minimize frequency of GC

 Rule of thumb: make it as large
as possible
 Given acceptable collection times

Sun™
Tech
DaysSizing the Old Heap

 Ensure heap fits in physical memory
 Paging and locality of reference issues

 larger young heap, smaller old heap

 Undersized heap can lead to
fragmentation

 Oversized heap increases collection times
 Locality of reference problems

 Use ISM and Variable page sizes to alleviate

Sun™
Tech
DaysIntimate Shared Memory

 Designed for use on big memory Solaris machines
 Don't use if memory requirements will cause paging

 JDK1.3.1 introduced support for heaps > 2Gb

 ISM uses larger page sizes (4Mb rather than 8Kb)

 Locks pages into memory (no paging to disk)

 -XX:+UseISM (Solaris Only)

 -XX:+UsePermISM (Solaris Only)

 -XX:+UseMPSS (Solaris 9 Only)

 Need to change shm parameters in /etc/system

Sun™
Tech
DaysAggressive Heap

 -XX:+UseAgressiveHeap
 Must have min of 256MB RAM

 Overall heap will be around 3850Mb

 Thread allocation area 256MB

 GC deferred as long as possible

 Do not use -Xms or -Xmx with this

 May cause stack space to run out
 Use -Xss to compensate

 Not suited to multi-app servers

Sun™
Tech
DaysHotSpot™ Thread Options

 -XboundThreads *

 -XX:+UseThreadPriorities

 -XX:+UseLWPSynchronisation **

 -XX:+AdjustConcurrency *

* Solaris Only

** SPARC Only

Sun™
Tech
DaysGeneral Tuning Advice

 Allocate more memory to the JVM
 64Mb default is often too small

 Set -Xms and -Xmx to be the same
 Increases predictability, improves

startup time

 Set Eden/Tenured space ratio
 Eden >50% is bad

 Eden = 33%, Tenured = 66% seems
to be good

Sun™
Tech
DaysConclusions

 Understanding the virtual machine will
help you tune performance

 Use profiling tools to find bottlenecks

 Adapt HotSpot™ parameters to your
application

 Always use the latest JRE

 Sun is always improving Java™
performance

Sun™
Tech
DaysFurther Information

 java.sun.com/blueprints/performance

 java.sun.com/products/hotspot

 research.sun.com/projects/jfluid

 developers.sun.com/dev/coolstuff/jvmstat

 Developer.java.sun.com/developer/
technicalArticles/Programming/GCPortal

Sun™
Tech
Days

Q&A

Sun™
Tech
Days

Simon Ritter
Technology Evangelist

simon.ritter@sun.com

Sun™ Tech Days

