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 Fast thread synchronization
 Adaptive compilation
 Generational garbage collector
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 Handleless objects

 Two-word object headers

 Reflective data as objects

 Native thread support
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 Age old problems
 How to allocate space efficiently

 How to reclaim unused space (garbage) 
efficiently and reliably

 C (malloc and free)

 C++ (new and delete)

 Java™ (new and Garbage Collection)
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 Garbage detection
 Distinguish live objects from garbage

 Reference counting

 Cyclic reference problem

 Garbage reclamation
 Make space available to the running 

program again
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 Most objects are very short lived
 80-98% of all newly allocated objects 

die within a few million instructions

 80-98% of all newly allocated objects 
die before another megabyte has been 
allocated

 This impacts heavily on choices 
for GC algorithms
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 Copying

 Mark - Sweep

 Mark - Compact

 Incremental

 Generational

 Parallel Copy

 Concurrent

 Parallel Scavenge
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 Stop-the-world collector

 Very Efficient
 Traverses object list and copies objects in 

a single cycle

 Simultaneous detection and reclamation

 GC pause is directly proportional 
to total size of live objects
 Bigger semi-spaces improve efficiency

 Less frequent GC, more dead objects
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 Stop-the-world collector

 Distinguish live objects from garbage
 Traverse graph of pointer relationships

 Mark objects that can be reached

 Reclaim the space
 Heap space is “swept” for marked areas

 Free space is added to a free list, ready 
for use
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 Different-sized objects cause 
fragmentation
 Multiple free lists for different-sized blocks

 Cost of collection proportional to size 
of heap
 Not just live objects

 Locality of reference
 New objects get interleaved with old objects

 Bad for VM-based operating systems
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 Eliminates fragmentation issue of 
Mark-Sweep

 Allocation becomes stack-based

 Order of objects maintained
 Locality of reference

 Requires multiple passes to complete
 Mark live objects

 Compute new location

 Update pointers
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 Stop-the-world impacts performance
 Big heap, big pauses (00's – 000's ms)

 Interleave units of GC work with 
application work

 Problem is that references change 
while GC runs
 Get floating garbage
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 Old objects tend to live for a long time
 GC can spend lots of time analysing and 

copying the same objects

 Generational GC divides heap into 
multiple areas (generations)
 Objects segregated by age
 New objects die more quickly, GC more 

frequent
 Older generations collected less frequently
 Different generations use different algorithms
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Eden = NewSize – 

       ((NewSize / (SurvivorRatio + 2)) * 2)

From Space = (NewSize – Eden / 2)

To Space = (NewSize – Eden) / 2)

 -XX:NewSize

 -XX:MaxNewSize

 -XX:NewRatio

 -XX:SurvivorRatio
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 Tenured generation
 Objects with long lifetime

 -Xms

 -Xmx

 -XX:MinHeapFreeRatio

 -XX:MaxHeapFreeRatio
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 Used to hold class files

 Default size is 4Mb

 -XX:PermSize

 -XX:MaxPermSize

 -Xnoclassgc
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 Similar to copy-collector
 Still stop-the-world

 Allocates as many threads as CPUs
 Algorithm optimized to minimize contention

 Maximize work throughput
 Work stealing
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 -XX:+UseParNewGC
 Default copy collector will be used 

on single CPU machines

 -XX:ParallelGCThreads=<num>
 Default is number of CPUs

 Can be used to force the parallel copy collector 
to be used on single a CPU machine
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 Stop-the-world

 Similar to parallel-copy collector

 Aimed at large young spaces (12-80Gb)

 Scales well with more CPUs

 Adaptive tuning policy
 Survivor ratio

 Promotion undo to prevent out 
of memory
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 -XX:+UseParallelGC

 -XX:ParallelGCThreads=<num>
 Control number of threads

 -XX:+UseAdaptiveSizePolicy
 Automatically sizes the young generation and 

selects optimum survivor ratio
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 Rate of object creation

 Object life spans
 Temporary, intermediate, long

 Types of object
 Size, complexity

 Relationships between objects
 Difficulty of determining and tracking object 

references
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 Profile, profile, profile!

 Use profile data to determine 
factors affecting performance

 Modify parameters to optimize 
performance

 Repeat
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 Simplest approach

 -verbose:gc

 -Xrunhprof

 -XX:+PrintGCDetails

 -XX:+PrintGCTimeStamps

 -XX:+PrintHeapAtGC
 Warning: very verbose



Sun™
Tech
DaysQuick Performance Fix

 Always upgrade to the latest version 
of the JDK/JRE
 Sun is always working to improve 

performance

 Sun is always working to reduce the 
number of 'undocumented features'
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Changed implementation of AggressiveHeap option
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 Temporary
 Die before encountering a young GC

 Intermediate
 Die before being tenured to old space

 Long 
 Get promoted to old heap space

 Ratio of these has big impact 
on heap layout
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 Code inspection
 Remove references when not required

 Can do this explicitly with

  objectRef = null;

 Avoid creating objects
 Intermediate objects silently created when 

immutable object values change
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 Can be good for heavy weight objects
 Database connections/threads

 Reduce frequency of young GC

 Can also be bad
 Pooling can be more expensive than 

creation/collection

 Can violate good OO design principles
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 Promote all live objects
 No tenuring of objects in survivor spaces

 Good for apps with few intermediate objects

 -XX:MaxTenuringThreshold=0
 Number of times an object is copied in the 

survivor spaces

 -XX:SurvivorRatio=100
 Ensures all of young generation is allocated to 

the eden space
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 Reduce state
 Objects die before leaving eden

 Avoid references that span heaps
 More work required to trace links between 

young and old spaces

 Flatten objects
 Complex structures require additional work 

to determine live objects
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 Extremely important to GC performance

 Factors to consider
 Young GC frequency/collection time

 Ratio and number of short, intermediate 
and long life objects

 Promotion size

 Old GC frequency/collection times

 Old heap fragmentation/locality problems
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 Fragmentation is not an issue
 Locality of reference could be

 Maximize collection of temporary objects
 Reduces promotion & tenuring

 Minimize frequency of GC

 Rule of thumb: make it as large 
as possible
 Given acceptable collection times
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 Ensure heap fits in physical memory
 Paging and locality of reference issues

 larger young heap, smaller old heap

 Undersized heap can lead to 
fragmentation

 Oversized heap increases collection times
 Locality of reference problems

 Use ISM and Variable page sizes to alleviate
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 Designed for use on big memory Solaris machines
 Don't use if memory requirements will cause paging

 JDK1.3.1 introduced support for heaps > 2Gb

 ISM uses larger page sizes (4Mb rather than 8Kb)

 Locks pages into memory (no paging to disk)

 -XX:+UseISM (Solaris Only)

 -XX:+UsePermISM (Solaris Only)

 -XX:+UseMPSS (Solaris 9 Only)

 Need to change shm parameters in /etc/system
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 -XX:+UseAgressiveHeap
 Must have min of 256MB RAM

 Overall heap will be around 3850Mb

 Thread allocation area 256MB

 GC deferred as long as possible

 Do not use -Xms or -Xmx with this

 May cause stack space to run out
 Use -Xss to compensate

 Not suited to multi-app servers
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 -XboundThreads *

 -XX:+UseThreadPriorities

 -XX:+UseLWPSynchronisation **

 -XX:+AdjustConcurrency *

* Solaris Only

** SPARC Only
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 Allocate more memory to the JVM
 64Mb default is often too small

 Set -Xms and -Xmx to be the same
 Increases predictability, improves 

startup time

 Set Eden/Tenured space ratio
 Eden >50% is bad

 Eden = 33%, Tenured = 66% seems 
to be good
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 Understanding the virtual machine will 
help you tune performance

 Use profiling tools to find bottlenecks

 Adapt HotSpot™ parameters to your 
application

 Always use the latest JRE

 Sun is always improving Java™ 
performance
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 java.sun.com/blueprints/performance

 java.sun.com/products/hotspot

 research.sun.com/projects/jfluid

 developers.sun.com/dev/coolstuff/jvmstat

 Developer.java.sun.com/developer/
technicalArticles/Programming/GCPortal
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