
The Computer Journal, 47(2), © The British Computer Society; all rights reserved

Experiences from Implementation
and Evaluation of Event Processing
and Distribution of Notifications in

an Object Monitoring Service
Aleksander Laurentowski and Krzysztof Zieliński

Institute of Computer Science, AGH University of Science and Technology,
Al. Mickiewicza 30, Kraków, Poland

Email: al@ics.agh.edu.pl, kz@ics.agh.edu.pl

Organization of events processing and distribution of notifications is a key issue for performance
of software monitoring and management systems, particularly for reducing the execution-time
overheads they incur. This paper provides practical guidelines for design and implementation of
event report generation and dissemination frameworks, based on experiences from implementation,
configuration and evaluation of Melita On-line Object Monitoring Service (MOOMS): an on-line
monitoring service for distributed object-oriented applications. As MOOMS is in many aspects
similar to the Java Management Extensions (JMX) framework, the presented evaluation may shed
some light on how this class of object services may be developed and used with efficiency in mind.

Received 6 August 2002; revised 15 July 2003

1. INTRODUCTION

Processing and distribution of events play a fundamental role
in monitoring and management systems. The architectures
of this class of systems have often been a subject of
research and refinement, with a notably mature and universal
approach recently proposed by Sun Microsystems as the
Java Management Extensions (JMX) [1] specification and
Java API. Nevertheless, a high level of abstraction and
generality of this proposal have left much space for
configuration and implementation details that may have a
tremendous influence on the performance of applications. In
particular, we believe that the design and implementation
of the two lowest architectural levels from the monitoring
systems’ reference model [2, 3]—the monitoring information
generation and dissemination layers—are the key for the
ultimate performance of the target system. Middleware
service programmers and users also demand practical
guidelines on how to implement and use the monitoring
service frameworks in an efficient way. This paper aims
at providing such guidelines, based on experiences from
implementation, configuration and evaluation of Melita On-
line Object Monitoring Service (MOOMS) [4, 5], which has
been conceived independently, but at the same time when the
JMX specification efforts took place.

MOOMS is dedicated to monitoring the lifecycle of
software objects, having in mind that each component
of a real IT system may itself be such an object or
may be mapped into a representing or wrapping object.
MOOMS is language- and middleware-independent, and

has already been implemented for two different middleware
systems. Coincidentally, similar initial assumptions of
MOOMS and JMX resulted in a situation that MOOMS—
due to their similar architecture and functionality—may be
easily considered as a system developed under the JMX
framework. But, in contrast to JMX, MOOMS’s design
and implementation were strongly performance-driven in
the sense of reducing execution-time overheads. Thus, its
performance evaluation may shed some light on how JMX
implementations and their applications may be efficiently
designed and configured, at least in the sense of performance
implications associated with the use of this class of services—
despite the fact that JMX is basically limited to Java
and provides (as a general-purpose framework) a richer
functionality than MOOMS.

The paper is structured as follows. Section 2 is an attempt
to gather the requirements for events reports’ generation
and dissemination layers in monitoring services. Section 3
describes the architecture and functionality of the MOOMS
service, as a case study of the targeted class of systems.
In Section 4, the architectures of JMX and MOOMS
have been compared with stress on the organization of
monitoring events’ generation and distribution mechanisms.
An overview of possible implementational solutions that
could be easily applied to this category of systems, illustrated
by example of the MOOMS service, is given in Section 5.
Section 6 brings in a performance study of influence of
these solutions, and of Quality of Service (QoS) mechanisms
applied to tune event reports’ dissemination, on the incurred

The Computer Journal, Vol. 47, No. 2, 2003



2 A. Laurentowski and K. Zieliński

execution-time overhead. The paper ends with conclusions
and service usage recommendations based on the obtained
results.

2. REQUIREMENTS FOR EVENTS’ GENERATION
AND DISSEMINATION

This section identifies the basic issues concerning
requirements for events’ generation and dissemination lay-
ers of on-line remote software monitoring services for dis-
tributed OO applications. It focuses on the following key
questions:

(i) What should be the target of monitoring and what
events should be intercepted?

(ii) How is the monitoring information gathered and
disseminated?

(iii) What are the configuration and management require-
ments for the service?

2.1. Monitored entities and events

The actual target monitored entities to which the service
should be applied are usually application-level software
objects of distributed applications, as they model or represent
the real-world resources under scrutiny. These objects, called
monitored objects, can be of different granularity: both
language-level (e.g. C++ or Java objects) and larger-grain
networked objects (e.g. CORBA objects) and components
(e.g. JavaBeans), but they may also wrap or represent even
larger application components, legacy code and hardware
devices/interfaces.

The state of monitored objects, described by the objects’
attributes and their values, should be under monitoring.
In the monitoring service model, the run-time activity of
monitored objects (and, in effect, of the server in which
they reside) can be thus depicted by a history of changes of
their attributes. Therefore, tracking changes of monitored
attributes’ values and subsequently sending notifications
(event reports) on that should be the key functionality of the
monitoring service.1

Logical relations (associations) between monitored objects
should also be under monitoring. Real-world objects,
structures and organisms always enter in logical relations
with other objects/organisms. Object-oriented systems have
been invented to model the real-world beings, so their nature
is alike. Inter-object relations may be of different type
and lifecycle profile (e.g. static or dynamic) and a mature
monitoring service must provide facilities to express, define
and discover graphs of relations and their shape (topology),
as well as to track changes to these graphs if applicable [6, 7].

2.2. Generation and dissemination of monitoring
information

The key elements of each monitoring system’s infrastructure
are sensors (probes) residing in the monitored application

1 An alternative or supplement to this approach is tracking invocations
of object methods/operations, but note that not all these inter-object
communication events must result in changes of state of objects (e.g. attribute
read operations).

and observing the behaviour of a small part of its state space
in order to intercept events and report on them, i.e. generate
event reports, also called notifications.

The possible dissemination schemes (also called mon-
itoring modes) include sampling (pull-mode), tracing
(push-mode) and periodic notification on events [8, 9, 10].

Sampling is querying sensors on demand about the current
state of monitored entities. Tracing is immediate notification
subsequent to the event, initiated by a sensor residing upon
the monitored resource.

Sampling by definition is rather infrequent, as it is steered
manually by an operator and thus adapted to the—limited—
human perception. Tracing implies a potentially more
intensive operation of the monitoring service infrastructure,
as the initiative is here on the system’s side and one can expect
much higher event rates. This in turn may cause degradation
of the underlying monitored system’s performance by an
increase in the execution-time of the application, called
overhead.

Therefore, a proper design and implementation of the
monitoring service infrastructure responsible for genera-
tion and dissemination of notifications in the push-mode
(tracing) is particularly important in performance-sensitive
applications.

2.3. Configuration and management requirements

For a better usability and user acceptance, a monitoring
service should be flexible, dynamically configurable and
manageable at run-time, as the users’ requirements may
change in time.

Multiple concurrent users, in the configuration and man-
agement context, mean that the service must allow dy-
namic creation and update of a set of monitoring applica-
tions simultaneously watching a particular server/application
under observation, and not only a single monitoring
client.

The second issue is a dynamic definition of a scope of mon-
itoring, i.e. the view that a particular observer can build for
his/her own purposes by choosing only the targets of inter-
est from the monitored system. Free choice should concern
the types of events and notifications emitted by monitored
entities, as well as the delivery scheme (monitoring mode).
Monitoring applications should be able to operate at differ-
ent levels of abstraction of monitored entities, ranging from
an attribute level, through object level to a class of objects
or even applications. In other words, a monitoring service
must provide a fully dynamically configurable, distributed
architecture, allowing an arbitrary number of observers to
connect/disconnect to/from monitored servers, choose a dif-
ferent set of monitored entities, types of events and acti-
vate different functionalities (e.g. choose a proper monitoring
mode) per each monitoring application at run-time, in order
to keep up with various application scenarios and varying
views and functional expectations of different users.

A monitoring service should also provide some kind
of mechanisms, configuration facilities and parameters
for management of performance factors like the incurred

The Computer Journal, Vol. 47, No. 2, 2003



Experiences from Implementation and Evaluation of Event Processing 3

overhead, notification delay or event rate at the client
side. For example, the service could provide relevant QoS
mechanisms and parameters with regard to dissemination of
notifications.

3. CASE STUDY: MOOMS ARCHITECTURE

The goal of this section is to describe the architectural design
of MOOMS—a distributed on-line monitoring service for
software objects that satisfies the architectural requirements
defined in Section 2 and was the prototype for our
performance evaluations.

The primary intention of MOOMS’s design and
implementation was that the service should be lightweight
and efficient, i.e. it should minimize the (anyway inevitable)
execution-time overheads introduced by the monitoring soft-
ware infrastructure to the business computations of the un-
derlying (monitored) application. Moreover, MOOMS is
language- and middleware-independent, i.e. its modules, IDL
interfaces and classes may be implemented in most pro-
gramming languages (e.g. C++ or Java) and over any
middleware platforms (e.g. CORBA, RMI or proprietary
systems).

3.1. MOOMS infrastructure inside a monitored
component

Figure 1 depicts the architecture of MOOMS and identifies
the key elements of its monitoring infrastructure. In this
viewpoint a group of objects residing in a target component
(e.g. a CORBA server) are selected and monitoring-
enabled at a software instrumentation phase and in effect
are visible to the service and its users as monitored objects
(MOs). MOOMS enables its user to bind MOs into a
tree, in order to express containment relations between these
objects (also relations determined solely for the needs of
monitoring and management). This tree, called Monitoring
Information Base (MIB), creates the heart of the monitoring
infrastructure.

The functionality of the service is monitoring the lifecycle
and containment relations of monitored objects (i.e. addition,
removal and physical deletion of the nodes of the MIB
tree) and their run-time activity expressed by changes of
values of their attributes (also selected for monitoring at
the instrumentation phase). The activity of intercepting
these events and formulating notifications (event reports) is
performed by two kinds of sensors: MO-sensors (which are
actual nodes of MIB, aggregated with monitored objects),
and attribute sensors (which are wrappers replacing original
monitored object’s attributes). These sensors, along with
external service interfaces and their implementation, form
the key part of the monitoring infrastructure, generating
monitoring information and disseminating it among the
monitoring client programs being direct users of the service.
In the current MOOMS implementation, the invocations of
appropriate sensors’ operations are to be hand-coded into the
application source code, while the implementation of sensors
(a class hierarchy) is provided as a linkable library.

3.2. MOOMS interfaces and monitoring modes

Communication between monitoring clients and the server’s
monitoring infrastructure is maintained by invocations of two
types of interfaces (see Figure 1):

(i) Server-side interfaces: Introspection, Pull Monitor-
ing, Push Monitoring, Subscription End-Point (SEP)
(containing also a QoS-setting operation) and
Management.

(ii) Client-side interface called Observer that must be
implemented by a monitoring client working in the
push-mode to enable transmission of notifications from
the target server. This idea is based on the well-known
Observer design pattern [11]. The stream of event
notifications forms a communication channel which
can be tuned with QoS mechanisms.

The server-side interfaces support the following function-
ality of MOOMS:

(i) Run-time instance-level introspection of moni-
tored entities (monitored objects with their at-
tributes in the context of containment relations
described by the MIB)—via the Introspection
interface;

(ii) pull-mode monitoring—via the Pull Monitoring
interface;

(iii) monitoring client registration (attachment) to the
push-mode monitoring (tracing)—via the Push
Monitoring interface;

(iv) subscription to the chosen monitored entities in the
push-mode—via the SEP interface;

(v) setting QoS policies and parameters for streams of
event notifications to monitoring clients—via the
QoS-setting operation of the Subscription End-Point
interface; and

(vi) management of monitored entities—via the Manage-
ment interface.

The Introspection interface enables monitoring clients
to browse the MIB at run-time in order to discover the
monitored objects and attributes of interest and obtain their
names, identifiers, types, properties and contained objects,
i.e. descendants (‘children’) in MIB.

Once a monitoring client program knows a name
or identifier of a monitored attribute discovered using
Introspection, it may get (sample) its current value with usage
of the Pull Monitoring interface.

Alternatively, the monitoring client may initiate the push-
mode monitoring by connecting to the server and subscribing
for one or more types of events concerning a discovered
entity with usage of the Push Monitoring and SEP interfaces.
Basically, the types of events can be: addition or removal
of subordinate objects in MIB or a physical deletion while
the entity is an MO, or change of value in case the entity
is an attribute. Should such events happen, the monitoring
infrastructure in the target server will intercept them and
generate and transmit relevant notifications to the monitoring
client(s) by invocations of the Observer interface. Here

The Computer Journal, Vol. 47, No. 2, 2003



4 A. Laurentowski and K. Zieliński

Business Interface

Business Client Business Client

Component (Server)

Monitored Objects

Monitoring
Information
Base (MIB)

MIB
root

Introspection

Monitoring
Pull

Push
Monitoring

Subscription
End-point

request for
name/id/typereply

request for

value (status)

reply

subscription

QoS setting

stream of events

QoS

Manage
ment

SM

Monitoring Client

Monitoring
Client

Observer

suspend/re
sume

other
business
objects

MO
MO
sensor

MO
MO
sensor

MO
MO
sensor

MO
MO
sensor

MO
MO
sensor

MO
MO
sensor

MO
MO
sensor

MO
MO
sensor

FIGURE 1. Architecture and interfaces of the MOOMS monitoring service.

the active role is played by the monitored server, and thus
push monitoring is an implementation of tracing. When
a monitoring client is no longer interested in receiving
notifications from a particular event source (MO or attribute
sensor), it may un-subscribe from it or even disconnect from
the server at any time.

3.3. Event notification with QoS elements

One object implementing the SEP interface will be created in
the monitored server for each observer (monitoring client),
thus forming a subscription and QoS controlling end-point
for the one-to-one communication channel to that client.
To manage a potentially high-throughput of notifications
incoming to its Observer interface over that channel, the
monitoring client may invoke a relevant operation from
the SEP interface at the server-side to set appropriate QoS
parameters for this event stream. Actually, the QoS policies
available in MOOMS are targeted mostly on the server side, to
help to minimize the run-time overheads thereby reducing the
CPU costs of remote invocations of notification operations.
These policies are as follows.

Batching event reports, i.e. collecting them into a sequence
and delaying their dispatching until the size of that sequence
meets some threshold value, given by the monitoring client
as a QoS parameter. The advantage of batching is that
delivery of notifications—a potentially heavyweight remote
invocation—takes place only every n events (where n is the
sequence size), so the communication overhead is shared
between event reports. In case of low event loads, batching
should be supplemented by an automatic flush mechanism
after an appropriate timeout set for the event reports collection

period. This would prevent unpredictable delays of event
reports delivery.

Periodic notification, with the period to be set by the
monitoring client as a QoS parameter. That means sending a
sequence of notifications on all events that happened during
the last period. Both batching and periodic notification
are per-observer policies, and a server servicing many
monitoring clients in parallel may employ a different policy
for each one.

Priorities of delivery for events originating from chosen
sources. Some sensors may produce alarm events that are of
special importance to some monitoring clients. Alarm event
notifications should be delivered to those clients immediately,
i.e. in practise as soon as possible or at least with a higher
priority than regular events (i.e. the rest of events), depending
on a possible implementation. MOOMS provides a high-
priority mode of notifications’ delivery, called urgent mode,
along with a standard, normal-priority one, called regular
mode. This QoS policy is set on a per-source basis (i.e. per-
attribute-sensor or per-MO-sensor), and therefore it must be
set in the event generation layer, i.e. in a sensor, which must
dispatch event reports for a delivery with a required priority.
The other policies could be implemented in the dissemination
layer only.

The Management interface, in turn, allows for run-time
management of event sources: temporarily suspending (and
later resuming) generation of notifications by chosen sensors
working in the push monitoring model. This approach
of just avoiding excessive generation of data is effective
and much simpler and cheaper than data processing in
filters, which can be quite expensive. A wise usage of
Management can bring substantial decrease is execution-time

The Computer Journal, Vol. 47, No. 2, 2003



Experiences from Implementation and Evaluation of Event Processing 5

overheads generated by the monitoring infrastructure,
particularly in scenarios with a number of sensors active
concurrently.

The MOOMS service maintains a fine-grained (i.e.
per-sensor) subscription for notifications. This design
assumption allows in the implementation to keep a registry
of observers subscribed to a particular sensor. It helps to
assure that no notifications are generated when there are no
subscribers even when a sensor is active (‘switched on’), and
thus to reduce the overhead to an indispensable minimum in
such cases.

3.4. Other work

The assumptions on types of events and modes of monitoring
place MOOMS in the stream of management and monitoring
systems employing polling a dedicated interface and/or
triggering generation of event reports on events’ interception.
This approach has been adopted e.g. by SNMP and OSI/ISO
[12] management standards, and recently JMX or the DMTF
model (so called Triggers [13] and, to some extent, by the
solutions described by Debusman and Kroeger in [14].

A different approach is tracing invocations or transactions
in distributed applications, to build e.g. an execution log for
visualization, debugging or other purposes. This model is
represented e.g. by CORBA Portable Interceptors, experi-
mental systems like MODIMOS [7] or in some degree, by
the Application Response Measurement (ARM) API [15].

It should be also underlined that the MOOMS architecture
is open to plugging-in compatible standard mechanisms and
services, e.g. the CORBA Event or Notification service to be
used for events delivery instead of the simplistic (but in many
cases more efficient) invocation of the Observer interface.

4. JMX VERSUS MOOMS: A COMPARISON OF
MONITORING FRAMEWORKS

This section brings a short comparison of two existing
monitoring frameworks: JMX and MOOMS, satisfying most
of the requirements proposed in Section 2. These frameworks
have been designed in parallel, but have some common
fundamental features that will be revealed and elaborated
below. A framework, by definition, is rich and flexible,
so that it can be used like a tool box: you have all the
tools (here: different functionalities, modes of operation etc.)
available down there, but you pick up only what you need at
a moment. The spectrum of ‘must-provide’ functionalities
has been established throughout the recent years by network
management standards (SNMP, CMIS/CMIP [12]), CORBA
Event and Notification object services [16, 10] and many
commercial and research monitoring tools [6, 17, 18].

4.1. A comparison of architectures and interfaces

The JMX specification defines a generic notification model
based on the Java event model. The JMX architecture is
divided into three levels: instrumentation level, agent level
and distributed services level. The current version of the JMX
specification [1] addresses the first two levels and provides

only a brief overview of the latter. JMX provides a rich
framework functionality out of which users may choose
features, interfaces and services adequate to their current
needs. The MOOMS project addresses all three respective
levels, but in a much simpler approach, while putting more
attention to dissemination of events with QoS elements.

Both investigated frameworks deliver the three basic mon-
itoring modes: sampling (pull-mode), tracing (push-mode)
and periodic notification on events, out of which the user is
able to choose and use one or more.

The key architectural components of the instrumentation
level in both systems are instrumented objects called either
Managed Beans (MBeans) in JMX or MO in MOOMS. They
implement a relevant monitoring/management instrumenta-
tion interface and interoperate with agent-level components
such as MBean Server in JMX or service infrastructure level
interfaces like SEP, Introspection and Pull Monitoring in
MOOMS. An MBean is a Java object that encapsulates at-
tributes and operations through their public methods and fol-
lows specific design patterns for exposing them to manage-
ment applications via agent-level access and manipulation
operations. A MO in MOOMS possesses its own relation-
sensitive MO-sensor and may contain a collection of attribute
sensors, which are objects substituting chosen original at-
tributes of that MO. The former type of sensor notifies on
changes of a graph of containment relations formed by MOs,
while the latter one intercepts changes of attributes’ values
and generates event reports on such events.

The primary mechanism to achieve the desired flexibility
and dynamic configurability of both investigated monitoring
services is introspection—a run-time mechanism for
discovering what is available there for monitoring in the
underlying monitored application/server: objects, their
attributes, interfaces, properties, associations, types of
events etc. In JMX introspection can be implemented with
so called standard MBeans by applying naming convention
design patterns to attributes, their getter/setter methods and
operations. A JMX agent uses introspection to look at
the methods and superclasses of a class to determine if it
represents an MBean that follows the design patterns, and
to recognize the names of both attributes and operations.
A more intuitive method of using a special DynamicMBean
inspection interface can be used for the more advanced types
of MBeans, i.e. dynamic and open MBeans. MOOMS
follows an approach similar to this latter one, by offering a
single, uniform Introspection interface for discovering MOs,
their containment relations with other MOs, attributes, types,
names, identifiers and properties.

The core component of the JMX infrastructure is the
MBean server, which is a registry for MBeans. Any
object registered with the MBean server becomes visible to
management applications and all management/monitoring
operations applied to MBeans need to go through this agent-
level entity. The MBean server provides methods necessary
for the creation, registration and deletion of MBeans, as
well as the access methods for registered MBeans and their
attributes (for getting and setting their values). It also
contains a method for discovering attributes, operations,

The Computer Journal, Vol. 47, No. 2, 2003



6 A. Laurentowski and K. Zieliński

notifications (event reports) and constructors exposed by
an MBean for management/monitoring. In MOOMS,
this functionality is implemented by the MIB (comprised
of sensors) and is distributed across the different service
interfaces, including SEP, Pull Monitoring and Introspection.

Incidentally, the same sensor switch on/off functionality
provided in MOOMS via the Management interface is
available in JMX on the sensor level via so called monitor
MBeans (see below).

4.2. A comparison of notification models

In the JMX’s notification model, event reports can be emitted
by MBean instances and by the MBean server, generally on
specific changes of the MBean’s attributes which are the fields
or properties of the MBean’s management interface. The
mechanism for detecting changes in attributes and triggering
the notification of events is not a part of the JMX specification,
at least in its current release. The attribute change
notification behaviour is therefore generally dependent upon
the implementation of each MBean’s class. An exception
to this are monitor MBeans, which are in fact predefined
sensors performing periodic sampling of an attribute in
the MBean they observe. The three types of monitor
MBeans that must be provided in every JMX implementation
are CounterMonitor, GaugeMonitor and StringMonitor. If
switched on, each of them automatically sends a relevant
notification when a specific set of conditions concerning the
value of the observed attribute is satisfied. In contrast to
this, MOOMS implementations deliver ready-to-use classes
of sensors for all simple data types, implementing exactly the
same user interface as these predefined types respectively. In
C++ this can be implemented in a particularly elegant way
with usage of operators overleading.

JMX also provides a RelationService class supporting
definition, management and querying of arbitrary relation
types and relations between MBeans. This approach is more
general than the simple containment relation supported by
the MIB in MOOMS.

The monitoring client application in JMX may reg-
ister once as a notification listener with a notification
broadcaster MBean and further receive notifications on all
events that may occur in the broadcaster, i.e. the listener’s
handleNotification() method will be invoked when any
notification is issued by the MBean (an explicit implemen-
tation of the Observer design pattern [11]). All the monitor
MBeans and the RelationService are broadcasters, but the
NotificationBroadcaster interface may also be implemented
by customary MBeans. Subscription for notifications may be
performed also via the MBean server. A broadcaster MBean
and its listeners exchange instances of subclasses of the Noti-
fication class. For example, the AttributeChangeNotification
class allows management service and applications to be
notified whenever the value of a given MBean’s attribute is
modified. The broadcaster has got a notification filter and an
immutable hand-back object associated per listener. Filters
help to constrain the potential stream of notifications, e.g.
the AttributeChangeNotificationFilter class implements the

following operations: enableAttribute(), disableAttribute(),
disableAllAttributes() and getEnabledTypes()—the first
three being self-describing while the last one returns a
list of the attribute names currently enabled for emitting
notifications.

The model specified by the current JMX specification
only covers the transmission of events between MBeans
within the same JMX agent (i.e. a local notification inside a
single JVM). However, a JMX implementation may provide
services that allow remote distribution of notifications via so
called connectors, thus allowing a management application to
listen to MBeans’ events remotely. In the JMX architecture,
an MBean has the full responsibility for sending notifications,
but it may be supported by a relevant connector server by its
side, as shown in Figure 2.

Similar to JMX, MOOMS also exploits the Observer
design pattern in the approach to tracing. In MOOMS, the
SEP objects form notification subscription and QoS man-
agement end-points for their monitoring client applications.
One SEP object is created dynamically for each monitoring
client in a one-to-one proxy relationship. Prior to the push-
mode operation, each client registers its SEP at run-time as an
observer (in the Observer design pattern sense) within each
relation-sensitive MO-sensor or value-sensitive attribute sen-
sor in the scope of interest of the given client. Therefore,
similar to JMX, this process of subscription for notifications
is performed directly with a target sensor. Quite importantly,
however, in MOOMS the client settles the expected types of
events and priority of delivery during subscription. This pre-
cise selection is intended to constrain the sensor as the source
of events, i.e. to prevent it from generating unwanted moni-
toring information, as MOOMS does not provide a separate
filtering functionality. A sensor only produces an event re-
port and forwards a pointer to it to subscribed SEPs. These
SEP objects are further responsible for dissemination of event
reports to—potentially remote—monitoring client applica-
tions (as shown in Figure 3), as well as for implementing
dissemination optimization and QoS policies over communi-
cation channels with observers. Such an approach enables a
lightweight implementation of a sensor as a fine-grain object
in comparison to an MBean. The advantages of this approach
will be shown further in this paper. Pull-mode monitoring op-
erations like getting the value of an attribute are invoked di-
rectly on the relevant sensor, but being human-initiated, they
are definitely infrequent and do not affect performance.

Both JMX and MOOMS provide some mechanisms
dedicated to improve their efficiency or reduce the execution-
time overhead that they incur. An interesting feature
of the MBean server is the cached values behaviour of
attributes’ values—if the requested data is up-to-date (i.e.
a timeout since the last update has not yet expired), then the
monitored/managed resource is not interrupted with a data
retrieval request. MOOMS in turn employs the QoS policies
of notifications’ dissemination and several performance-
supporting solutions in the service implementation, that will
be elaborated in the following sections.

And last, but not least, it must be stated that JMX is a
framework and API for the Java programming language only,

The Computer Journal, Vol. 47, No. 2, 2003



Experiences from Implementation and Evaluation of Event Processing 7

MBean Server

Connector
Server

Notification
Queue

Connector
Client

Connector
Client

Connector
Server

Notification
Queue

MBean

Agent Management
Client

Remote
Notifications

MBean

MBean

MBean

Local
Notification

Proxy
MBean

Proxy
MBean

Proxy
MBean

Proxy
MBean

FIGURE 2. Architecture of generation and dissemination of event notifications in JMX.

Monitoring
Client

Monitoring Service

Subscription
End-Point

Subscription
End-Point

Stan
dard

SEP

SEP

Urgent

Urgent

event channel
to remote client

Notification
Queues

event channel
to remote client

Notification
Queues

Monitored
Object

Monitored
Object

Monitored
Object

Sen
sor

Event
Processor

Event
Processor

Event
Processor

Event
Processor

Observer

Observer

Agent
(service infrastructure)

Business
Server

FIGURE 3. Architecture of generation and dissemination of event notifications in the MOOMS monitoring service (push-mode).

while MOOMS is language- and middleware-independent.
The two existing implementations of MOOMS are in C++,
but over different middleware platforms (CORBA and
EPOCHA—a Melita Inc. proprietary solution).

5. IMPLEMENTATION ISSUES OF EVENT
GENERATION AND DISSEMINATION
LAYERS

This section focuses on technical solutions that should be
applied in the implementation of a monitoring service to
support an efficient working of its event reports dissemination
layer. The advocated solutions are illustrated by example of
the MOOMS implementation.

5.1. Efficient internal sorting and distribution of
event reports

Intercepting events and generating event reports is the first
phase of work of a monitoring service. Generation of an event
report technically means that memory for an appropriate
programming-language-level structure (record) is allocated
and event information and context data are written into its
fields. Then there is a subset of monitoring clients subscribed
to obtain a particular event report among the potentially many
monitoring clients attached to the monitoring-enabled server.
Therefore, the second phase is internal event reports’ sorting
and distribution within the monitoring service infrastructure,
where event reports are being scheduled for delivery to

The Computer Journal, Vol. 47, No. 2, 2003



8 A. Laurentowski and K. Zieliński

SEP

sensor

sensor

sensor

sensor

production
thread’s
area

area of monitoring threads

SEP

SEP

EP

EP

EP

EP

EP

EP

EP

EP

EP

monitoring-enabled server monitors

generation layer sorting layer delivery layer
with QoS

further distribution
layer

SP

SP

SP

SP

Observ.

Observ.

Observ.

FIGURE 4. Stages of work of a monitoring service plotted onto its simplified architecture.

appropriate monitoring clients. In MOOMS there are the
SEPs that represent monitoring clients at the server side, so
at the second stage the work of this service is to sort out
and pass particular event report structures to appropriate SEP
objects in an efficient way, i.e. with a minimal execution-time
overhead and avoiding the costly repetitive copying of event
report data.

To identify the first problem, consider a single-threaded
implementation of the service, with no separate threads to
serve the monitoring infrastructure, but with the production
thread(s) doing all the job in an instrumented application. In
such an implementation, the production thread executing the
internal code of a sensor should iterate over a list of registered
SEP objects, and invoke a proper delivery operation at each
of them, passing a reference to the newly created event report
as a parameter to the invocation. Note that in case of a
remote observer this requires network communication, and
thus can be heavyweight if a guaranteed semantics of delivery
is desired (e.g. not CORBA oneway). At the end of this
iteration, the production thread could release the memory
allocated for the event report structure. This approach
is simple, but may potentially impose a heavy overhead
(equivalent to a sequence of RPCs) on the production thread.

A slightly more effective solution is depicted in Figure 4
within the borders of the sorting layer. It introduces the notion
of a sensor proxy (SP), which is a per-sensor buffer to which
the production thread could insert the original event report
and immediately return to the business computation. For
efficiency, it could just pass a pointer to the report structure
instead of copying it to the SP, provided that a release of the
allocated memory is further guaranteed in a safe manner.

The sensor proxies could be further served by a separate
thread or threads, either one per all SPs in a server, or
even in a thread-per-proxy model (the latter one, assuming
creation of tens or hundreds of threads is unacceptable in
a general case). This solution is along the right lines but
it comes at some costs. With one proxy thread, e.g. a
list of all sensor proxies in the server would have to exist,
over which the thread could iterate. This list would cost
both in terms of memory and CPU time, as it would have
to be updated every time a new MO or sensor is registered
in the MIB, and mechanisms for maintaining consistency
between this list and the MIB would have to be employed.
Moreover, in case of existence of additional specialized
threads (e.g. implementing differentiated delivery modes as
it is in MOOMS), even this thread may be one too many
to assure an effective work of the service on uniprocessor
machines with the inevitable presence of context switching,
as we will show in the following section.

The second problem is a risk of unnecessary copying
of event report data which may occur in case of multiple
SEP objects registered in a given sensor, particularly if the
burden of distributing the event report is to be handed over
to a number of additional threads (consider the responsibility
for memory de/allocation). This costly physical replication
can be easily avoided if the so called reference-counting
smart pointers [19] are used to achieve a safe and automated
memory management.2 This approach is effective, as
copying 4 or 6 bytes of a pointer is a very short operation

2 see smart pointers’ descriptions on the web, e.g. http://www.boost.
org/libs/smart_ptr/smart_ptr.htm.

The Computer Journal, Vol. 47, No. 2, 2003



Experiences from Implementation and Evaluation of Event Processing 9

for contemporary processors and optimizing compilers, so
such work can still be assigned to the production thread.
The job of a smart pointer is: (1) to allocate memory for
a given object only once, along with setting a counter of
references to this object to 1; (2) to convert further attempts
to copy the pointed object to incrementation of the reference
counter only; (3) to convert attempts to delete the object
to decrementation of the reference counter; and (4) finally
to delete the object and release the memory only when the
reference counter equals zero (which means that nobody is
using the pointer any more). This solution helps to avoid
repetitive memory allocation (the production thread creates
only one copy of each event report structure) and excessive
copying of invocation parameters while passing a single event
report structure to the queues of potentially many SEP objects
(only pointers are copied).

5.2. Processing event report queues and delivering
event reports

The key implementational assumption of MOOMS to satisfy
the main goal of reduced overhead was to exempt the
production thread(s) from the most heavyweight duty in
the monitoring service infrastructure—the actual delivery of
event reports—by using extra threads for that purpose. Thus,
once an event report is created and its smart pointer inserted
to the event report queues at appropriate SEP objects, the
production thread returns to its business computation. The
process of notifying subscribed monitoring clients (according
to chosen QoS policies) is performed by one or more separate
thread(s), called monitoring thread(s). These threads iterate
the FIFO buffers (queues) of event reports, associated with
SEP objects. There are two queues at each SEP: one for
urgent events and one for regular delivery events, to sort
them initially and avoid costly event tagging and searching
(see Figure 3).

Several different thread models can be applied to
implement processing the event report queues, out of which
we have considered the following:

Production thread(s) only, i.e. a model in which no
separate monitoring threads are created and the production
thread(s) must take on all the monitoring duties, including
generation and delivery of event reports.

One monitoring thread in a server: a model in which
only one monitoring thread is created to serve all queues
in all existing SEP objects. The advantage of this model
is that it should work better than others on multiprocessor
machines with two CPUs only. It should also work well
on uniprocessors in many application scenarios. This model
however, has, two disadvantages:

(i) On larger multiprocessor architectures it will not take
advantage of the remaining CPUs.

(ii) Fairness and efficiency of the scheduling algorithms to
be applied for this thread are controversial. Basically,
two variants can be considered, but none of them is
truly acceptable. In the first one, the thread iterates
over all SEPs and at each of them clears the urgent
queue first (by dispatching the event reports to the

associated monitoring client) and then turns to do the
same for the regular queue; in the second one the thread
iterates over the urgent queues at all SEPs first, then
switches to make a loop over the regular queues of all
SEPs, and goes back to the urgent queues and so on.
The first variant does not guarantee the actual priority
of the urgent events, while the second one is inefficient
(too much polling of empty queues).

Pool of monitoring threads: a fixed number of monitoring
threads created to serve the set of SEPs, e.g. each thread to
serve a subset of them in one of the two scheduling variants
described above. Their drawbacks remain, but scalability is
improved and performance is better on a multiprocessor.

Monitoring thread per SEP, i.e. one new monitoring thread
is being created when a new SEP is being created (for a
newly attaching monitoring client), to serve exclusively both
its queues. A sole problem with this solution (to be noted,
is shared also with the previously mentioned variants), is
implementation of the periodic notification QoS policy while
guaranteeing immediate delivery of urgent event notifications
at the same time (e.g. the most straightforward solution of
putting the monitoring thread to sleep for arbitrary periods
of time will result in delaying the delivery of urgent event
reports potentially already waiting there in their queues).

Monitoring-thread-per-queue, serving that queue only,
i.e. in result a pair of threads is being created for each
new SEP (see Figure 3). This approach seems to be the
best one, as it enables a straightforward and efficient queue
processing procedure: each thread observes one queue only
and initially performs a wait (suspend) on a conditional
variable associated with the queue’s mutex, releasing the
CPU; once the production thread puts an event report’s
smart pointer into the queue and the QoS conditions are
met, it sends a signal to wake up the monitoring thread
and thus trigger processing the event reports residing in
the queue. This solution also scales automatically on
multiprocessors, which is an important advantage. Problems
may arise only on uniprocessors executing applications with
extreme frequencies of events and many observers (and thus
many threads), as the performance might be spoiled with
excessive context switching. Results of a performance study
of this model, done on uni- and multi-processor hardware
architectures are given in Section 6.

The advantage of the two latter thread models is that they
help to implement the feature of setting a QoS policy on
a per-observer basis, i.e. potentially a different policy and
conditions per each attached monitoring client.

One more issue concerning threads of the service
infrastructure is their priority: should they have equal or
lower priority than the production thread(s)? Intuitively,
the latter solution could offer better preservation of the
production thread’s performance. However, much of a true
answer depends on the properties of the given operating
systems and its thread scheduler, as well as on the frequency
of events in a given application. Several tests with high
event rates, performed with a MOOMS implementation on
Windows NT, have shown clearly that the mechanism of

The Computer Journal, Vol. 47, No. 2, 2003



10 A. Laurentowski and K. Zieliński

priorities should be used with care. The lower priority for
the monitoring thread may lead to its prolonged pre-emption
or even starvation, which may in effect cause unacceptable
delays in delivery of event reports to the monitoring client.

5.3. CORBA-based implementation of MOOMS

The performance evaluation described in the following
section has been accomplished with a CORBA-based C++
implementation of the MOOMS monitoring framework
(OmniORB 2.8 [20, 21]), employing the monitoring-thread-
per-queue thread model and tested both on a PC under RedHat
Linux and Sun SPARC machines under Solaris 7 and 8. The
thread interface used was OmniThreads [21]—a C++ class
library wrapping the operating systems thread library (on
Solaris: POSIX pthreads [22]).

This implementation comprises five IDL interfaces,
29 C++ classes, totalling only about 4500 lines of source
code. Hence, in terms of size the implementation is really
lightweight.

6. PERFORMANCE STUDY

This section presents selected results of tests performed to
evaluate the CORBA-based implementation of the MOOMS
monitoring service and to verify some of the solutions
concerning its implementation and configuration, postulated
in the previous section. The results concern the timing of
a series of remote invocation tests, measured at the client
side, in a client-server application. The monitored server,
the application client and the monitoring client run at a
separate computer each, all machines connected to a switched
Ethernet LAN.

6.1. Definition of tests

Two basic types of tests were performed:

(i) Monitored attribute update tests.
(ii) Monitored object lifecycle (i.e. creation + destruction)

tests.

They were based on invocations of two respective
operations from the following IDL interface:

interface TestInterface
{

long UpdateAttribute(in long aParam);
long CreateAndDestroyMO(in long aParam);

};

This interface was implemented by a CORBA object
residing in a CORBA server on a dedicated machine, either
on a single-processor Sun SPARC Ultra 1 workstation or on
a 2- or 3-processors Sun Ultra Enterprise 3000 server, each
running a Solaris 8 operating system.

The UpdateAttribute() operation merely increments an
integer attribute, triggering the associated sensor to generate
one attribute change event, and returns the input parameter.
The CreateAndDestroyMO() operation creates a small

monitored business object (of class FOO) together with its
MO-sensor, adds this sensor to the MIB, and then destroys
both objects. The source code for that is shown in the
following listing.

class FOO
{
public:
#ifdef MONITORED

MonitoredObject ∗MO;
#endif

long item1, item2;
};

long CreateAndDestroyMO(long aParam)
{

FOO ∗foo = NULL;
foo = new FOO;

#ifdef MONITORED
foo→MO = new MonitoredObject;
primary.MO→addObject("childFOO1",foo→MO);
delete foo→MO;

#endif
delete foo;
return aParam;

}

Note that each newly created MO-sensor object (of the
MOOMS library class MonitoredObject) is registered in the
MIB at the place determined by its parent monitored object
(here pointed by the variable primary) already existing in
the MIB. The foo monitored object is given a MIB name
‘childFOO1’. Execution of the addObject() method causes
generation of an additional event. Then, the foo’s MO-sensor
and the foo business object are deleted, which causes de-
registration of the MO from the MIB and, in consequence,
generation of a removal event (generation of deletion events
was suppressed in the test).

A single test case involved execution of a test application
client making two subsequent remote invocations: one of
the UpdateAttribute() and one of the CreateAndDestroyMO()
operation. Execution time of each operation was measured
separately with a µs accuracy (with the gettimeofday()
Unix system call) at the client side and written to a file.
For simplicity of presentation, however, the tests’ results
presented in the following subsections are the total time of
a test case, i.e. the time of the UpdateAttribute() plus the
time of the CreateAndDestroyMO() operation. They are
average values, as each test case was repeated 100 times in
a loop. Note that each single run of a test case generated
three events in the monitored server: one change of value
of an attribute and two MIB structure change events (one
MO addition and one MO removal). The well-known effect
of the first invocation of a CORBA object being much
longer due to managing Object References, initialization of
a TCP connection and the ORB itself etc. was bypassed by
providing an extra one at each sequence of invocations, and
discarding its timing.

The Computer Journal, Vol. 47, No. 2, 2003



Experiences from Implementation and Evaluation of Event Processing 11

Non-instrumented versions of the test application, lacking
the elements of the MOOMS infrastructure (the sensors,
SEPs etc.), have also been developed (note the preprocessor
directives in the source code). They were tested alongside
for performance comparison, to estimate the overheads
introduced by the monitoring service. Eventually, four
different versions of the test application were timing-
measured to assess also the effects of other factors, such as
multi-threading, number of simultaneous monitoring clients,
and QoS policies and parameters, as follows:

(i) An original (non-instrumented) test application.
(ii) A single-threaded implementation (the ‘production

thread only’ model), tested to produce a ‘level
of reference’ for performance comparison with the
multi-threaded one.

(iii) A test application instrumented with the principal,
multi-threaded version of the service (the thread-per-
queue model), with one up to five monitoring clients
attached to the test server, observing all events taking
place inside (each monitoring client running on a
separate dedicated machine). This test was repeated
with different QoS policies and different values of
QoS parameters in the regular mode of event reports’
delivery.

(iv) An instrumented test application without any mon-
itoring client attached (and thus no notifications
emitted)—in order to discover the overheads intro-
duced by an ‘idle’ monitoring infrastructure.

6.2. Results of tests on a uniprocessor computer

Figure 5 presents the results (mean total time of a single test
case in µs) of the tests done on a uniprocessor Sun Ultra
1143 MHz, with the batching QoS policy set on and with
different batch sizes. The monitoring service was working
in the regular mode of delivery. Results are given for 1, 2, 3
and 5 monitoring clients attached to the monitored test server
respectively.

Performance of the single-threaded version of the test is
given in the bottom row of the table in Figure 5, and thus
only the edge results are drawn as level of reference lines in
the graph, for its better clarity. For another comparison, the
non-instrumented version of the test took 2010 µs, while an
instrumented one without a monitoring client took 2325 µs
(15% more, which is the overhead cost of an ‘idle’ service
infrastructure, i.e. the one intercepting events, but not
emitting any notifications). A relative overhead with regards
to the non-instrumented test’s performance, expressed in
percentage, is given in the third column of the table in Figure 5
(for clarity, calculated for the test with one monitoring client
attached only). Its definition is as follows:

relative_overhead = timei − timen

timen

,

where timei is the time of performance of instrumented test
with monitoring client and timen is the time of performance
of non-instrumented test.

Generally, the results of the multi-threaded version of the
service for batch sizes less than 30 are worse than the level
of reference (3807 µs) determined by the single-threaded
implementation. This overhead is due to inevitable context
switches that must be done on this uniprocessor to allow
the monitoring thread to access the CPU. Note that the
computation to be performed by the production thread
at the server side (processing the request, unmarshalling
parameters, and marshalling and sending the reply through
the network) is long enough for the o.s. thread scheduler
to pre-empt it and give timeslots to the monitoring thread
during that time. Moreover, the monitoring thread emptying
the queue must impose a writer lock on the queue’s mutex,
thus making the production thread wait before it is able to
put new event reports into the queue. Thus, emerging context
switches spoil the performance of the multi-threaded service
implementation when there is only one processor available.
The batching QoS mechanism helps to reduce the resulting
additional overhead, but a satisfactory equal level is reached
only with batch sizes around 20–30, which are surprisingly
high. Note, however, that the business computations used in
the tests were trivially short, and as we can assume a more
or less fixed timing overhead per notification, the relative
overhead with longer real-world computations should be
much smaller.

One more rationale behind this test was to verify the
scalability of the CORBA MOOMS implementation with
regard to the number of monitoring clients. Here, each
additional monitoring client took about 1 ms more in
the single-threaded version, while the multi-threaded one
had results worse (with a range of about 40%) for small
batch sizes. Note that one monitoring client more means
two threads more in the test application server, and thus
more context switching overhead. A big batch size (100)
outperformed the results of the single-threaded version with
multiple monitoring clients, showing that the benefits of the
batching QoS policy may be visible only after its appropriate
tuning.

Figure 6 presents results of the same tests done again on a
Sun Ultra 1, but with the periodic notification QoS policy set
on. Here, the multi-threaded service performs not only much
better (1 ms or more) than with the batching QoS on, but also
better than the single-threaded level of reference (34–44%
versus 89% of relative overhead). This phenomenon can be
explained by a different rate of forced context switches and by
the multi-threading itself, supported by a beneficial activity
of the thread scheduler of the operating system. Note that
on a uniprocessor the multi-threaded implementation of the
service works in two phases, executed in time-sharing:

(i) phase 1: sensing, generating and buffering (only
intercepting the events and intra-server generation of
event reports), performed by the production thread;

(ii) phase 2: clearing the SEP queues and delivering
event reports to monitoring client(s) (an I/O-intensive
phase), performed by the monitoring threads.

In the batching QoS policy there is a ‘hard’ guarantee
of changing the service’s activity from phase 1 to phase 2

The Computer Journal, Vol. 47, No. 2, 2003



12 A. Laurentowski and K. Zieliński

2000

4000

6000

8000

10000

12000

14000

16000

0 10 20 30 40 50 60 70 80 90 100

batch size (number of events)

RPC test on Sun Ultra 1 with multiple monitors 
 total time: sensor + MO, batching QoS, mutithreaded SEP

1 monitor (mt SEP)
2 monitors (mt SEP)
3 monitors (mt SEP)
5 monitors (mt SEP)

Level of reference (only production thread) - 1 monitor
level of reference (only production thread) - 5 monitors

batch 1 monitor relative 2 monitors 3 monitors 5 monitors
size Total overhead Total Total Total

time [µs] with 1 mon. time [µs] time [µs] time [µs]
1 5243 160% 7426 9782 15134
3 4367 117% 5693 7044 10027
10 4419 119% 5597 6978 9649
20 4084 103% 5162 6037 8572
30 3794 88% 5102 6441 9171
100 3728 85% 4263 4442 6138

single-
thread 3807 89% 4916 5994 8068

ref. level

FIGURE 5. Total time of a test case on a Sun Ultra 1, with batching QoS and multiple monitoring clients.

when the batch limit is reached and the threads’ priorities
are equal, even if the production thread is still busy. On a
uniprocessor this means an inevitable context switch between
threads during the business computation, which causes an
overhead. Therefore, a context switch happens every 3, 10,
30 etc. events, depending on the batch size, i.e. quite often,
hence a high overhead.

In the periodic notification QoS policy, a change of phases
(thus potentially a context switch) only happens once at the
end of each notification period. If the business computation
at the test server plus the time needed to dispatch a reply to
the test client is still shorter than the notification period, then
the operating system may easily schedule the computation
(as seen by the business client) in a series of uninterrupted
timeslots and thus avoid the context switching overhead in a
vast majority of cases. This justifies the advantage of periodic
notification over batching QoS policy.

Additionally, an effective implementation of multi-
threading and periodic notification in the service infrastruc-
ture may allow the monitoring thread to take advantage of

the time when the production thread is idle at the server side.
That is, the time of the network transmission of a result plus
the time to generate a new invocation at the client side and
to deliver the request to the server together may easily be
enough time for the monitoring thread to do a major part of
its job (phase 2) then, while the production thread is idle. On
the contrary, in the single-threaded version of the service, the
production thread must do all the functions in phase 2, and
the client is blocked during all that time. This brings out the
multi-threading advantage.

Generally, the resulting overall relative overhead of about
35% on a uniprocessor computer would be acceptable in
many application areas.

Note also that with multiple monitoring clients the multi-
threaded version with periodic notification scales much better
than the single-threaded one. The first remark is that
for notification periods longer than 3 ms even with five
monitoring clients the results are far below the first level of
reference, i.e. much better than in the single-threaded version
with one monitoring client only. Also, the notification

The Computer Journal, Vol. 47, No. 2, 2003



Experiences from Implementation and Evaluation of Event Processing 13

2600

2800

3000

3200

3400

3600

3800

4000

1 10 100 1000

R
P

C
 ti

m
e 

[m
ic

ro
se

co
nd

s]

notification period [miliseconds]

RPC test on Sun Ultra 1 with multiple monitors
total time: sensor + MO, periodic notif. QoS, mutithreaded SEP

1 monitor (mt SEP)
2 monitors (mt SEP)
3 monitors (mt SEP)
5 monitors (mt SEP)

level of reference (only production thread) - 1 monitor

notific. 1 monitor relative 2 monitors 3 monitors 5 monitors
period Total overhead Total Total Total
[ms] time [µs] with 1 mon. time [µs] time [µs] time [µs]

1 2895 44% 2942 3289 3464
3 2907 44% 3096 3160 3798
10 2826 40% 2838 2895 3015
30 2768 37% 2773 2788 2801
100 2736 36% 2789 2811 2878
300 2727 35% 2749 2827 2895
500 2713 34% 2741 2790 2881
1000 2747 36% 2769 2776 2926

single-
thread 3807 89% 4916 5994 8068

ref. level

FIGURE 6. Total time of a test case on Sun Ultra 1, with periodic notification QoS and multiple monitoring clients.

periods longer than 10 ms assure a better stability of the
the multi-threaded service’s work, as the tests’ results are
less dispersed. With these notification periods one additional
monitoring client takes only tens of microseconds (about
35 µs on average).

This is a clear evidence of the effective work of the
mechanism of non-copying smart pointers used to maintain
the event report data structures in the implementation of SEP
queues, and the multi-threaded model working successfully
in the periodic notification QoS in these test conditions.
Observation of benefits of these implementational solutions
is possible due to the fact that the results of this test are not
blurred by the effects of context switching.

6.3. Results of tests on a multiprocessor computer

A truly effective performance of the multi-threaded
implementation of a monitoring service can be expected on

a multiprocessor machine. The following section describes
results of the tests in which the test server was executed on
a 3-processors Sun Ultra Enterprise 3000 (3×hyperSPARC
400 MHz). Figure 7 presents results on that machine
with the batching QoS policy set on, with 1, 2, 3 and
5 monitoring clients observing the monitored test server.
Performance of the single-threaded version of the test
is given in the bottom row of the table in Figure 7,
however for clarity reasons, only its results with 1, 2 and
5 monitoring clients are drawn as level of reference lines
in the graph. A non-instrumented test took 1553 µs,
while an instrumented one without a monitoring client took
1662 µs (only 7% overhead cost of a non-emitting service
infrastructure).

The results are in line with the expectations. The multi-
threaded system performs better than the single-threaded one.
For up to three monitoring clients attached, the results are
well below the level of reference and the lines are nearly

The Computer Journal, Vol. 47, No. 2, 2003



14 A. Laurentowski and K. Zieliński

1500

2000

2500

3000

3500

4000

4500

1 10 100

R
P

C
 ti

m
e 

[m
ic

ro
se

co
nd

s]

batch size (number of events)

RPC test on a 3 processor Sun UltraEnterprise 3000 with multiple monitors
 total time: sensor + MO, batching QoS

1 monitor (mt SEP)
2 monitors (mt SEP)
3 monitors (mt SEP)
5 monitors (mt SEP)

level of reference (only production thread) - 1 monitor
level of reference (only production thread) - 2 monitors
level of reference (only production thread) - 5 monitors

batch 1 monitor relative 2 monitors 3 monitors 5 monitors
size Total overhead Total Total Total

time [µs] with 1 mon. time [µs] time [µs] time [µs]
1 2145 38% 2300 2878 4256
3 2096 35% 2248 2574 3293
10 2060 33% 2149 2486 3210
20 1913 23% 1962 2137 2302
30 1910 23% 1944 2006 2173
100 1905 23% 1916 1919 2053

single-
thread 2286 47% 2673 3101 3841

ref. level

FIGURE 7. Total time of a test case on a 3-processors Sun Ultra Enterprise 3000 400 MHz, with batching QoS and multiple monitoring
clients.

flat, which suggests that each of the active threads has been
assigned a separate CPU. For more monitoring clients (and
thus more active threads), the results start to deteriorate. This
leads to two main conclusions:

(i) As long as there are enough processors to allocate to
arising threads, the multi-threaded service performs
very well and the overhead related to new monitoring
clients is minimal (generally, in tens of µs), also due
to the mechanism of non-copying smart pointers used
in the implementation of SEP queues.

(ii) When there are more threads than processors, context
switches spoil the ideal performance, but the batching
mechanism helps to overcome this effect. Even
with batch size 3 the performance of all tests is
better than their single-threaded level of reference,
including the case with five monitoring clients.
This is much less than that was needed on a
uniprocessor with a three-times slower clock. An
obvious conclusion is that multi-threaded software

architectures require multiprocessor machines and
good OS thread schedulers to scale well and allow
batching QoS to work properly.

Tests with a bigger number of monitoring clients have not
been performed as they are quite easily predictable and the
problems with scalability of heavily multi-threaded appli-
cations have been well described in literature [22, 23]. In
an application with a huge number of monitoring clients
attached, even the available number of CPUs may not be
enough and the monitoring-thread-per-queue implementa-
tion may turn out inefficient and non-scalable. In such ap-
plication scenarios a single monitoring thread or a pool of
monitoring threads (= number_of_available_processors—
number_of_production_threads) should perform better, de-
pending on the underlying hardware architecture. A CORBA
Event Service or Notification Service could also be used to
deliver notifications in such cases.

Figure 8 presents tests’ results on the Sun Ultra Enterprise
3000 with the periodic notification QoS policy and 1, 2, 3

The Computer Journal, Vol. 47, No. 2, 2003



Experiences from Implementation and Evaluation of Event Processing 15

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

1 10 100 1000

R
P

C
 ti

m
e 

[m
ic

ro
se

co
nd

s]

batch size (number of events)

RPC test on a 3 processor Sun UltraEnterprise 3000 with multiple monitors
 total time: sensor + MO, batching QoS

1 monitor (mt SEP)
2 monitors (mt SEP)
3 monitors (mt SEP)
5 monitors (mt SEP)

level of reference (only production thread) - 1 monitor

notific. 1 monitor relative 2 monitors 3 monitors 5 monitors
period Total overhead Total Total Total
[ms] time [µs] time [µs] time [µs] time [µs] time [µs]

1 1879 21% 1915 1928 2044
3 1890 22% 1926 1953 2040
10 1916 23% 1943 2002 2044
30 1878 21% 1908 1947 1991
100 1881 21% 1887 1920 1938
300 1855 19% 1868 1916 1939
500 1868 20% 1878 1901 1928

1000 1869 20% 1891 1896 1923
single-
thread 2286 47% 2673 3101 3841

FIGURE 8. Total time of a test case on a 3-processors Sun Ultra Enterprise 3000 400 MHz, with periodic notification QoS and multiple
monitoring clients.

and 5 monitoring clients observing the monitored test server
respectively. Here, the differences between results are very
small and the characteristics of the graph is nearly flat (note
the resolution of the y-axis), at least for one and two mon-
itoring clients attached. An effective parallelism, a minimal
rate of context switches and a good work of the Solaris thread
scheduler result in a relatively small overhead—within the
range of 20%. It probably could be even smaller, if fur-
ther optimization of the MOOMS service implementation
is done, e.g. the expensive CORBA. Any type used for
implementation of the variable part of the event report was
replaced with a much more efficient IDL union or a family
of fixed compile-time definitions of event report structures.

7. CONCLUSION

There seem to be no significant structural differences between
MOOMS and JMX, apart from the fact that MOOMS offers

only a subset of the JMX functionality. Thus, similar
implementational solutions and mechanisms could be used
in JMX to provide good performance of its monitoring
information dissemination layer and the results of MOOMS’s
performance evaluation might help to formulate several
guidelines for more efficient implementations of JMX and
other monitoring frameworks.

The presented performance study has confirmed that the
cost of dissemination of event reports to remote monitors
is the main source of execution-time overhead introduced by
the monitoring service infrastructure. Multithreading used to
relieve the production thread of actual delivery of monitoring
information helps in a majority of configuration settings,
particularly well over multiprocessor hardware architectures
(as long as the total number of production and monitoring
threads does not outnumber the available CPUs too
much). Only with extremely intensive computations (with
infrequent idle time periods) performed on uniprocessors,

The Computer Journal, Vol. 47, No. 2, 2003



16 A. Laurentowski and K. Zieliński

usage of a single-threaded service implementation could be
recommended.

Batching and periodic notification QoS mechanisms ruling
notifications’ dissemination should assist a multithreaded
implementation in reducing overheads. The key issue is
to choose a particular QoS policy that adapts best to the
underlying hardware platform and application scenario, and
to tune the chosen mechanism with appropriate parameters,
i.e. batch size or notification period, to achieve best
performance results. Such a tuning should be careful, as
the choice must be conscious of possible consequences.
Note that both mechanisms eventually amount to buffering
notifications and delaying their delivery, i.e. from the
monitoring client’s user’s point of view, they both deliver
sequences of event reports, either fixed (batching) or of
unpredictable arbitrary length (periodic notification). For
example, using large batch sizes (to decrease the number
of context switches on a uniprocessor) may be dangerous,
because some event reports may not be delivered to the
monitor at all or too late if the number of generated event
reports is less than the batch size limit and suddenly there
is a break in generation of monitored events and the flush
on timeout is not implemented or the timeout period set is
too long.

Periodic notification is a safer QoS mechanism in this
respect and additionally it gives better timing results on
both uni- and multi-processors, as it takes advantage of
idle CPU cycles with some help of the system’s thread
scheduler. However, by choosing this QoS policy, the
monitoring system’s user must be prepared for large bursts
of notifications coming if the event generation rate is high.
Fortunately, mechanisms like filtering at the client side may
help to overcome this problem, eventually adapting the
notification rate at the user interface to the capabilities of
human perception.

Last but not least, avoiding repetitive copying of
monitoring information inside a monitored server, on the way
from generation of an event report until its dissemination to
multiple monitoring clients, is also essential, particularly if all
this is done by the CPU shared with the production thread(s)
and other monitoring thread(s). The actual mechanism to
be used for that purpose depends upon the programming
language of the service implementation.

REFERENCES

[1] Sun Microsystems Inc. (2002) Java Management
Extensions Instrumentation and Agent Specification, v1.1.
http://java.sun.com/products/JavaManagement.

[2] Feldkuhn, L. and Erickson, J. (1989) Event management as
a common functional area of open systems management. In
Proc. IFIP 6.6 Symp. on Integrated Network Management,
Boston, MA, USA, pp. 365–376. North-Holland.

[3] Mansouri-Samani, M. and Sloman, M. (1994) Monitoring
distributed systems. In Sloman, M. (ed.), Network and
Distributed Systems Management, chapter 12. Addison-
Wesley.

[4] Laurentowski, A. and Zieliński, K. (1999) A synergistic
approach to monitoring distributed software components.

In Proc. 3rd European Research Seminar on Advances
in Distributed Systems (ERSADS’99), Madeira, Portugal,
University of Lisboa, BROADCAST, Swiss Federal Institute
of Technology (EPFL), Lausanne.

[5] Laurentowski, A. (2001) A Distributed Monitoring Service
for Software Objects. PhD Thesis, University of Mining and
Metallurgy in Kraków, Poland.

[6] Borland Corp. (2001) AppCenter. http://www.borland.com/
appcenter/

[7] Zieliński, K., Laurentowski, A., Szymaszek, J., and Uszok, A.
(1995) A tool for monitoring heterogeneous distributed object
applications. In Proc. 15th Int. Conf. on Distributed Computing
Systems, Vancouver, Canada, May, pp. 11–18. IEEE
CS Press.

[8] Kaelbling, M. and Ogle, D. (1990) Minimizing monitoring
costs: choosing between tracing and sampling. In Proc. 23rd
Int. Conf. on System Sciences, January, pp. 314–320. IEEE
Computer Society Press.

[9] Schroeder, B. A. (1995) On-line monitoring—a tutorial. IEEE
Comp., pp. 72–78.

[10] Object Management Group. (2000) Notification Service
Specification. New Edition, v.1.0.

[11] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1994)
Design Patterns. Addison-Wesley.

[12] Stallings, R. (1993) SNMP, SNMP v2.0 and CMIP. A Practical
Guide to Network Management Standards. Addison Wesley.

[13] Seigneur, J.M. (2003) An overview of DMTF and CIM
www.cs.tcd.ie/Jean-Marc.Seigneur/Cim/Overview.htm.

[14] Debusman, M. and Kroeger, R. (2001) Widening Traditional
Management Platforms for Managing CORBA Applications
In Proceedings of Distributed Applications and Interoperable
Systems Conference, Kraków, Poland 17–19, pp. 245–256.
Kluwer Academic Publishers.

[15] The Open Group Systems (2002) Systems Management:
Application Response Measurement API ver. 2.0 Technical
Standard www.opengroup.org.

[16] Object Management Group. (1997) Event Service Specifica-
tion. OMG doc. 97-12-11.

[17] Segue Software Inc. (1999) Silk for CORBA—a White Paper.
http://www.segue.com/.

[18] Rackl, G., Lindermeier, M., Rudorfer, M. and Suess, B. (2000)
MIMO—an infrastructure for monitoring and managing
distributed middleware environments. In Sventek, J. and
Coulson, G. (eds), In Proc. Middleware 2000—IFIP/ACM
Int. Conf. on Distributed Systems Platforms, Lecture Notes
in Computer Science 1795, April, pp. 71–87. IFIP/ACM,
Springer Verlag.

[19] Stroustrup, B. (1997) The C++ Programming Language
(3rd edn). Addison-Wesley.

[20] Lo, S.-L. and Pope, S. (1998) The implementation of a high
performance ORB over multiple network transports. In Proc.
Middleware’98 Conf. Also appeared in a special issue of the
Distributed Sys. Eng. J.

[21] Lo, S.-L. and Riddoch, D. (1999) The OmniORB2 ver-
sion 2.8, User’s Guide. AT&T Research Laboratories,
Cambridge (formerly: Olivetti & Oracle Research Labora-
tory). www.uk.research.att.com/omniORB/omniORB.html.

[22] Nichols, B., Buttlar, D. and Farrell, J. P. (1996) Pthreads
Programming: A POSIX Standard for Better Multiprocessing.
O’Reilly & Associates, Inc.

[23] Schmidt, D. C., Stal, M., Rohnert, H. and Buschmann, F.
(2000) Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects. Wiley & Sons.

The Computer Journal, Vol. 47, No. 2, 2003


